Using Model-based Reasoning for Generating
Explanations from Environmental Models

Franz Wotawa

Graz University of Technology, Institute for Software Technology,
8010 Graz, Inffeldgasse 16b/2, Austria
votavaQist.tugraz.at,

WWW home page: http://wuv.ist.tugraz.at/wotava/

Abstract. The paper summarizes research for generating explanations
from environmental models. We make use of the corresponding representa-
tion of the environmental models as constraint satisfaction problems. We
show how this representation can be used directly to derive explanations.
During the whole paper we use a coarse model which represents the rela-
tionship between the ground-level ozone concentration and its influencing
quantities like traffic, industrial emissions, and meteorological conditions.

1 Introduction

The ability of explaining complex physical, chemical, or biological circumstances
to others which are less educated in the respective domains is an issue of growing
importance. Effects that are caused by decisions has to be known in advance in or-
der to prevent undesired consequences. For example, constructing a hydroelectric
power plant has an impact to the river’s ecosystem because of changes in water
flow and maybe the course of the river. In order to make a good decision which
reduces negative effects while retaining the positive desired once, knowledge about
consequences which originates from underlying physical, chemical, or biological
knowledge is required which is hardly available. Moreover, usually decision makers
do not have deep knowledge in all required areas. Instead they collect informations
from experts in various fields, merge them, and come up with a decision. There are
several risks attached to this process. First, there is always the problem of missing
information. You can never be sure really to capture all different aspects of a cer-
tain situation. Without special knowledge about relationships between causes and
potential effects there is a high possibility for failing to capture important facets
of a problem. Second, merging informations requires usually a deep understanding
of different domains. Moreover, there is no guarantee that the same words used
by experts in different domains really have the same meaning. Hence, the merged
knowledge may not capture reality.

In summary, fetching, evaluating, and merging knowledge requires a good un-
derstanding of basic principles and possible interactions behind processes, for mak-
ing a good decision. One solution of this problem is to provide decision makers
with complex models of the problem domain where they can interact with in order

341

Franz Wotawa

to get an understanding of causes and their corresponding effects. These mog
need not to capture all aspects of reality neither do they require to capture rea]ils
precisely. Instead the models should allow to extract the cause-effect relations}ll-.y
on an abstract level which is usually sufficient for decision making. The possibilizp
for interacting with the model is important in order to demonstrate whic}, action};
have which effects. However, it is equal important to show why an effect occur ang
to identify the root causes. For example, the amount of ground-level ozone which
is a poisonous gas in a region depends not only of the precursor substances which
originates from emissions of industry, traffic, and domestic fuel, but also from mpe.
teorological circumstances like the degree of sunshine and wind conditions, Hence
an explanation for a high ozone concentration in the troposphere should includé
all causes although some of them cannot be influenced by humans. Moreover, the
explanation should take care of a certain situation. If there is not traffic jam, the
number of cars in an area maybe is not high and as a consequence has almost no
influence on the ozone concentration. Once, the knowledge about no traffic jams
is available, the explanations of the high ozone concentration should not include
traffic as a cause anymore.

The purpose of this paper is to present both means for representing models
in a comprehensible way and a technique for computing explanations directly
from the available models. The technique for computing explanations from models
automatically takes care of additional knowledge. Hence, during interacting with
the model explanations change once new facts regarding the considered state are
available. The paper is organized as follows. In the first part we introduce the
concept of representing models as constraint satisfaction problems (CSPs). We use
a course cause-effect model for the ground-level ozone concentration for illustrating
the modeling. In the second part we give a short introduction into model-based
diagnosis and the algorithm that are required in order to compute diagnoses which

are equivalent to explanations. Related literature and open problems are discussed
at the end of this article.

2 Modeling Using CSPs

In this section we introduce the basic concepts and definitions of CSPs. An in-
troduction including a description of algorithms and improvements can be found
in (1,2] and more recently [3] which provides a good starting point for studying
CSPs.

A CSP is characterized by a set of variables V = {V;,...,V,}, each associated
with its (not necessarily finite) domain D;, 1 < i < n, and a set of constraints
C = {C,,...,Ck}. Each of the constraints C; has an associated corresponding
pair (Xj, R;), where X; C V is a set of variables, and R; is a relation over XJ
X; is called the scope of constraint Cj. For convenience we assume a function
dom : V — DOM that maps a variable V = i to its domain D;, a function
scope : C +— 2V that maps a constraint to its corresponding scope, and a function
rel : Cv— RELATIONS that maps constraints to their relations.

342

Using model-based reasoning for generating explanations from ...

Traffic jam (J)

Traffic (T)

Industrial emissions (1)

Domestic fuel (D)

Fig. 1. The causal relationships within the ozone concentration domain

Our ground-level ozone-concentration example can be represented by a CSP.
For this purpose we start using the causal relationships between the involved
quantities which is depicted in Figure 1. The causal relationships are given as
directed labeled arcs between the vertices. The direction of the arcs is always from
the cause to the effect. A label '+’ represents a positive influence, i.e., an increase
of amount at the cause leads to an increase of amount at the effect, whereas a -’
is for stating a negative influence. For example, a sunny day usually leads to an
increase of ozone concentration, but a day with heavy storms causes a decrease
of concentration at a specific location. Of course the represented model does not
capture all effects. The purpose of the model is to serve as an example to explain
definitions and algorithms throughout the paper.

In order to represent the cause-effect model from Figure 1 as a CSP we have to
map the arcs and vertices to a variables and relations. The extraction of variables
is simple. All vertices of the graph represent variables of the CSP. Hence, the set of
variables of our example comprise the emissions from traffic (T), from industry (1),
and from domestic fuel (D). Moreover, we have variables for precursor substances
(P), ozone (0), traffic jam (J), the amount of sunshine (S) and wind (W). The
constraints between the variables are given by the arcs. The corresponding vari-
ables to the source and target vertex have to be in the same constraint. If there are
several arcs which lead to the same target vertex, then all variables corresponding
to the source vertices have to be in the same constraint. For our example we can
identify three different constraints C;, Cz, and C3 with the following associated
scopes X;: X, = {T,I,D, P}, X2 = {T.J}, X3 = {P,5,W,0}. The only parts
that are missing for completing the CSP representations are the relations wll{ch
requires variable domains. For simplicity and because of the fact, thzft we are in-
terested in stating knowledge about deviations, like saying the traffic is increasing
or the amount of sunshine is stable, we associated the domain D = {+, 0,‘—} to all
variables, where '+’ represents increasing, -’ represents decreasing, and '0’ repre-

343

Franz Wotawa
sents stable. Using this domain we can state the following relations:

R(TIDP) Ry(PSWO)
000 O 000 0
-00 - -00 -
0-0 - 0-0 -
00 - - 00+ -
< =0 = - -0 -
-0 - - -0+ -
0-- - 0-+ -
- = = = R
+00 + +00 +
0+0 + 0+ 0 +
00+ + 00 - +
+4+0 + Ry(TJ) ++ 0 +
+0++ 00 +0 - +
0++ + - - 0+ - +
+++ + + + ++ - +
+-z 0 +-z 0
-+z 0 -+z 0
+z - 0 +z - 0
-z + 0 -z + 0
z+ - 0 z+ - 0
z-+ 0 -+ 0
-TzT - -z -
T-z - T -z -
Tz - - Tz + -
+zz + +zz +
z+zxT + T+ z +
T+ + Tz - +

Note that the last lines of relation R, and Rj represents other allowed com-
binations. For example, if one cause of precursor substances is increasing and the
other is decreasing nothing can be said about the precursor substances because
lack of quantitative informations. Hence, the z stands for all values of the domain
D which are not explicitly given in the tables.

The CSP representation of the ground-level ozone-concentration example can
now be used to answer questions. A question itself can be stated as a constraint.
By adding the constraint to the CSP model, we get a new CSP from which we
derive the answer. In order to distinguish the original CSP representation from the
representation with additional constraints, we refer to the former by CSPo and
to the latter by CSPZ where z is the set of additional constraints. For example,
when we want to know what causes the increase of ozone during stable weatl.ler
and traffic jam conditions, we introduce new constraints Cy4, Cs, Cs, and Cr with

344

Using model-based reasoning for generating explanations from ...

scopes Xq4 = {S}, Xs = {W}, Xe¢ = {J}, X7 = {O} and relations Ry = {(0)}
Rs = {(0)}, Re = {(0)}, Rz = {(+)}. Hence, we finally obtain a new CSP namely

{C4,C5,C6,C7} £ 5
CSP, . The answers of the question which is now represented as set

of constraints are the solutions of CSP(()C“C“‘C“'C’) . This leads us directly to the
question what solutions for a given CSP are? Because constraints formulate valid
relationships between variables, a solution are assignments of values to variables
such that all constraints are fulfilled.

When assigning a unique value to each variable from a subset of V, we get
an instantiation. We further say that an instantiation satisfy a given constraint
C; if the partial assignments which correspond to the scope of C; are element
of the relation R; of the constraint. Otherwise, we say that the constraint C;
is violated. For example, the instantiation O =' —’ satisfies the constraint R3
but violates the constraint Ry in CS P((,C“C°'C°’C’) because O =’ -’ is not an
element of relation R; (which holds only one valid tuple O =’ +’). The notation
of satisfaction and violation of constraints naturally leads to the definition of a
solution for a given CSP. A solution is an instantiation of all variables V such that
all constraints are satisfied. Such an instantiation is also called a legal or locally
consistent instantiation. Note that there is usually not only one solution to a CSP.
For CSPéC"C"'C"'C’) we obtain several solutions which satisfies all constraints.
For example, the assignment T ='0', I =’ +/, D="0",J='0/,§="0', W =" 0,
P =' 4+, O =' +' satisfies all constraints. A verbal interpretation of this solution is
that an increase of industrial emissions alone without an increase of emissions from
households causes an increase of the ozone concentration. Another solution would
include I =’ +' and D =' —' which says that savings in emissions of households
may not enough to decrease the amount of ground-level ozone when industrial
exhaust fumes increase too much.

3 Computing Solutions

A simple way of computing one or all solutions of a given CSP is to test all
possible variable assignment. Assignments that satisfy all constraints are added
to the set of solutions. This simple approach, however, is intractable in general
because it requires testing all possible assignments, which is exponential in the
number of variables if we assume finite domains. Hence, a more efficient approach
is necessary. One approach which is used in practice is to compute solutions by
applying search algorithms. In particular depth-first search with backtracking is
used. This approach can be further improved by applying heuristics which are
based on criterias like number of tuples in a relation or scope size of constraints.
Alternatively, there are algorithms available which can be applied for special CSP
like tree-structured CSPs. In this paper we follow this approach and show how
solutions can be extracted from tree-structured CSPs. Furthermore, we discuss
capabilities of this approach to be of use for general CSPs.

Before introducing the solution extraction algorithm for tree-structured CSPs
we have to define the term acyclicity of CSPs which is equivalent to tree-structured
CSPs. For this purpose we first show how general CSPs can be compiled into its

345

Franz Wotawa

equivalent hypergraph representation and than define acyclicity of hypergraphs
A hypergraph HG for a given CSP (V,C) is defined as follows. Every variable i;
mapped to a vertex and the scope of every constraint C; € C is mapped to an
arc in HG. Hence, an arc not only connects two vertices as this is usually the
case for graphs but connects two or more vertices. The correspondin

g hypergraph
representation of our ozone-concentration model CSPéC"C°'C°‘C’) is depicted in
Figure 2.

Fig. 2. The hypergraph representation of CS Péc"c"“c“'c")

A graphs is said to be cyclic there exists a path through the graph which starts
and ends in the same vertex. Hence, a graph is acyclic if such a path does not
exists. This definition of cyclicity and acyclicity can be extended for hypergraphs.
Checking acyclicity of hypergraph can be easily implemented. A simple algorithm
that proves the acyclicity of hypergraphs is the following:

acyclicHG(V,A)

1. Repeatedly apply the following operations until they can not be applied:
(a) Delete a vertex that occurs only in one arc.
(b) Delete an arc that is contained in another arc.

2. If no vertex remains, then return True. Otherwise, return False.

In this article V denotes the set of vertices and A the set of arcs. The acyclicHG
algorithm returns True if the hypergraph is acyclic and False, otherwise, and
run in time quadratic in the size of the hypergraph. In [4] Tarjan and Yan-
nakakis presented a linear time algorithm for testing acyclicity of hypergraphs.
We now say that a CSP is cyclic (acyclic) if its corresponding hypergraph is cyclic
(acyclic). Because the hypergraph from Figure 2 is acyclic the corresponding CSP
CSI’({)C“Cs‘c"‘C’) is acyclic.

Every acyclic hypergraph and hence every acyclic CSP can be represented
as hypertree. One vertex of the hypergraph is selected as the root vertex. The
other vertices are connected as given by the original hypergraph. The hypertree
representation of our ozone concentration example is depicted in Figure 3.

346

Using model-based r ing for generating explanations from ...

Fig. 3. The hypertree representation of CSP((,C“CS'C*C”

A solution of an acyclic CSP can be easily computed. The algorithm has two
phases. In the first phase we are working from the leaf vertices to the root. In
the forward phase we compute new relations for a vertex by applying a semi-join
operation of the relation and the relations of its child vertices. This operation is
done until we reach the root vertex. The second phase or backward phase is for
extracting all or one solution from the remaining relations. If we are searching only
for one solution, we choose one tuple of the relation and remove all tuples of the
children relations that are not compatible with the chosen tuple. By selecting the
next tuples from the children we go down to the leafs. The forward phase of the
algorithm works in polynomial time with respect to the size of the CSP. This holds
also when there are an exponential number of possible solutions. Hence, solution
extraction is might be more time consuming. If we are searching only for one solu-
tion it can also be done in polynomial time. The reason for this fast behavior of the
algorithm comes from the structural properties which causes every computation
to be local. Hence, we do not have to consider computations of different branches
within the tree at the same time.

It is worth noting that not all CSPs are acyclic and therefore cannot be repre-
sented as a hypertree. Hence, the described CSP algorithm cannot be applied in
all cases but there is solution to the problem. All CSPs can be converted into an
equivalent acyclic CSP by combining different vertices, i.e.,, constraints and their
relations. This conversion process can be done automatically and makes only use
of the structural properties of the CSP and is usually referred as decomposition
methods. There are several different composition methods described in literature,
including tree-decomposition (5], hinge decomposition [4], and more recently hy-
pertree decomposition [6-8], which subsumes the others. The number of joined
constraints which is usually expressed as tree-width is an indicator of acyclicity
of the original CSP. Note that every CSP can be compiled into an acyclic variant
by joining all constraints together. In this case we finally get a hypertree which
comprises only one vertex. Because of the fact that joining together all constraints
of a CSP is intractable in general, such a compilation does not make any sense in
practice. However, in many practical cases the number of constraints that have to

347

Franz Wotawa

be joined is relatively small and decomposition methods lead to CSPs whicl, can
be solved in a faster and more efficient way.

Fig. 4. Computing a solution for CSP(()C“C"'C"'C”

In the following we illustrate the CSP algorithm. For this purpose we use
our ozone-concentration example. The computation steps of the forward phase
is depicted in Figure 4. In the first step we apply a semi-join operation on the
relations of constraints C; and Cg which lead to a reduced relation for C3 because
only a ’0’ value for variable J is allowed anymore:

R(TJ)
00

In steps 2, 3, and 4 the relation of constraint C3 is reduced which is based on
values of Cy, Cs, and Cy.

Ry (PSWO)
Y00 +

In the last steps we have to apply the new relations of R; and Rj3 on relation
R, and we finally obtain:

R(TIDP)
T 040 +
00+
0+ +
0+ -
0- +

+ |+ ++

This 5 relations represent all possible solutions for our example. We can extract
several interesting facts from the solutions. For example, it might be not enough
to reduce the industrial emissions alone without considering emissions from house-
holds.

In summary computing a solution for a CSP as explained in this article include
the following steps:

348

Using model-based reasoning for generating explanations from ...

1. First check acyclicity of the CSP. If it is acyclic, goto step 3.

2. Convert the CSP to an equivalent acyclic CSP. For this step we require a
decomposition method like hypertree decomposition.

3. Compute a solution by first going from the leafs to the root and reducing the
number of tuples of the corresponding relations. This step requires the use of
the semi-join operator for relations. Secondly, go from the root to the leafs and
select an appropriate tuple. The step may reduce tuples in children vertices.

The proposed method comprises two steps. One offline step which converts a
cyclic CSP into an acyclic one, and an online step which computes the solutions.
The latter has a very good time complexity with respect to the size of the CSP.

4 Model-based Diagnosis

Although, CSP allow for representing models in a convenient way there is a short-
coming in distinguishing between different kind of variables. For example, in our
ozone-concentration domain we have variables which correspond to effects and vari-
ables which correspond to causes. Effects and causes can be observed. However,
once an effect is undesired we are interested in finding the causes of the effect.
Note that some of the causes are associated to actions. For example, emissions
can be influenced by taking actions, e.g., introducing governmental restrictions on
driving or on used cars or industrial plants. Other causes are not associated with
actions. For example, sunshine and wind cannot be influenced in general.

To overcome this problem we introduce the concept of model-based reasoning
and in particular model-based diagnosis. In model-based diagnosis we assume to
have a model of a system like our ozone-concentration CSP model, some observa-
tions, and a set of assumptions. The assumptions correspond to part of the model
and therefore cause some behavior. In case of differences between the behavior
and the observations, assumptions can be withdrawn until the derived behavior
does not contradict the observed behavior. Model-based diagnosis has been used
in different domains including ecological systems [9-11]. In this article we refer to
the standard definition of model-based diagnosis [12] and adapt it.

A diagnosis problem according to Reiter [12] is a tuple (SD,OBS, AS) where
SD is the model (system description), OBS is a set of observations, and AS is a
set of assumptions. The assumptions are linked to the system description. They
are used to select the corresponding behavior which is used to derive the overall
behavior of the system. In the original article SD and OBS are sets of sentences
written in first order logic (FOL). In our case SD is the original CSP with added
information about the corresponding assumptions, and OBS is a set of additional
constraints like in our CS Péc.,c,,c.,c,) model.

In order to introduce the assumption in the CSP representation we follow the
following idea. Every tuple of a relation expresses a behavior. For example the
first line of relation R; of CSPp says that if all emissions do not change, then
the amount of ozone precursor substances do not change. Hence, we can add the
assumptions that all emission variables do not change in a separate column of

349

Franz Wotawa

the tuple. Hence, we can add the set {okT,okl,okD} to this additional column
where okX stands for Xe {T,I,D} does not change, e.g., okT means that the
flmount of traffic or to be more exact the amount of emissions coming from traffic
is stable. With similar arguments we can fill the additional column for all tuples
of the relations.

This filling, however, leads to a huge number of added facts about the state
of causes. To overcome this problem we simplify the representation and add onl
negative facts, e.g., ~okT to the additional column. Hence, finally we obtain
modified CSP for the ozone-concentration domain.

{{—0kT, ~okl,—okD}}

R\(T I D P) Expl. R;(P S W O) Expl.
000 0 ({}} 000 0 {(}]
200 - {{~okT}) -00 - ({1}
0-0 - {{~okl}} 0-0 - {{-~okS}}
00 - - {{~okD}} 00+ - {{~okW}}
- = 0 - {{-0kT,—okI}} - -0 - {{-okS}}
- 0 - - {{-0kT,—okD}} -0+ - {{—~okW}}
0 - - - {{-okI,~okD}} 0 - + - {{~okS,—~okW}}
- - = - {{~okT,—okI,—~okD}} - - + - {{-0kS,—0kW}}
+ 00 + {{-0kT}} +00 + {{}}
0+ 0 + {{—oklI}} 0+ 0 + {{—okS}}
00+ + {{~okD}} 00 - + {{~okW}}
++ 0 + {{—0kT,—okl}} ++4+ 0 + {{-okS}}
+0 + + {{~okT,=okD}} +0 - + {{~okW}}
0 ++ + {{-okl,—okD}} 0+ - + {{—okW}}
+++ + ++ - + {{-0kS, ~okW}}

R2(T J) Expl.

0 0 {{}}
- - {{-okT}}
+ + {{-0kT}}

Given the diagnosis problem stated as CSP with an additional column for
explanations (Expl.), we can compute the diagnoses. A diagnosis is explanation
of a tuple that remains when computing a solution. The algorithm for computing
a solution for the modified remains the same. The only thing that changes is the
semi-join operation which has to consider the explanation column. According to
the TREE* algorithm [17] are joined together by taking all elements of the sets at
the corresponding tuple and building the union. Because of the fact, that we are
usually interested in explanations that comprises a given number of assumptions,
we reduce the union sets to elements with a cardinality smaller or equivalent to
the given number. For example if a tuple has the explanation set {{a,b},{c} and
another tuple (which can be joined) has a set {{a,c}}, we first build the union of
all elements. We obtain a set {{a,b,c}, {a,c}}. In the second step we remove all
elements with a cardinality greater than a given value, say for example 2. Hence,
we finally obtain the explanation {{a,c}} for the joined tuple. We could remove
the first element because of its cardinality which is greater than 2.

350

Using model-based reasoning for generating explanations from ...

For our modified ozone-concentration example we change the relations of the

additional constraints to R; = {(0,{{}})} for i € {4,5,6} and Ry = {(+ {{}D}
We now use thg same algorithm for computing a solution but consider tixe addi-
nonfﬂ explanation column of the relations. In the first step the relations of con-
straint C; and Cg are joined which leads to the new relation:

Ra(T J) Expl.
0 0 {{}

Further applying the join operation to constraints Cs, Cy4, Cs, and Cy leads to
the new relation for constraint Cj:

R3y(PSW O) Expl.
+00 + {{}}

Finally, we join the relations of constraints C,, C; and C; and get the following
result:

R(T I D P)Expl.

0+ 0 + {{-okl}}
00+ + {{-okD}}
0+ + + {{-okI,~okD}}
+
+

0+ - {{—okI,-okD}}
0- + {{—okI,~okD}}

This solution represents three different explanations for the fact that the ozone
concentration is rising. One says that the industrial emissions are the root cause
(—okI), one says that the household emissions (—okD) is the reason for the given
observations, and the last explains the ozone concentration by assuming both
emission categories to be responsible.

We can state two important differences when we compare the explanation-

based solution with the solution obtained from the CSP alone without considering
assumptions.

1. In the explanation-based solution, the causes of a given behavior are now
explicitly stated. For example, in the first line of the resulting relation of
constraint C; we now that only the industrial emissions are responsible.

2. The explanations can be ordered with respect to their cardinality. If we are not
interested in explanations of a size 2 or. more, only two explanations remain
for our ozone-concentration example.

The original algorithm for computing diagnosis from tree-structured CSP can
be found in [17]. There proofs of the correctness and the relationship between the
CSP approach and the original model-based diagnosis definition can be found. We
omitted these results and definitions because of the scope of this article which is
to show how CSP techniques can be used to model environmental systems and
how useful explanations can be extracted.

351

Franz Wotawa
5 Related research

There is a lot of research at the boundaries between Artificial Intelligence anq
environmental modeling. When considering only work which is close to qualitative
or model-based reasoning we have to mention Heller and Struss’s work on modeling
water ecosystems using a component-oriented modeling approach [9-11). In their
work modeling is done for the purpose of explaining undesired behavior which leads
to counter measurements in order to bring the ecosystem in a desired state. Heller
and Struss use the traditional model-based diagnosis approach for computing the
explanations. In contrast to their work, we focus on environmental modeling using
CSPs and explain how available techniques can be used to compute explanations
directly from the CSPs.

Other work in environmental modeling which makes use of qualitative reasoning
has been done by Bredeweg and colleagues. They use qualitative reasoning directly
for expressing relationships between quantities of different ecosystems. In (13] the
authors present a model which represents the interactions between populations.
In [14] the qualitative modeling of stream ecosystems is explained. All the papers
focus mainly on modeling and not on explanations. Moreover, they make use of
causal models and not of CSPs.

One of the first algorithm which allows for computing diagnoses directly from
CSPs is El Fattah and Dechter’s SAB algorithm [15]. Based on the ideas behind
SAB Stumptner and Wotawa (16, 17] invented the TREE* algorithin which is faster
when computing minimal cardinality diagnoses. More recently Sachenbacher and
Williams [18] presented a framework which explains the differences and equiv-
alences between SAB and TREE*. Other algorithms for diagnosis like Reiter’s
hitting set algorithm [12,19] or Fréhlich and Nejdl’s algorithm [20] are based on
logical descriptions of models and not on CSP formalizations.

Gottlob and colleagues [8] give a very good comparison of available decom-
position methods including references and relationships. For a description of an
algorithm which implements the hypertree decomposition we refer to [6]. The algo-
rithm allows for an easy implementation which can be used for small and medium
size CSPs. Because of memory consumption some improvements have to be done
in order to extend applicability. One direction of improvements which makes use
of structural pre-decomposition with limitations is explained in [21]. There the
authors introduced the coupling of different decomposition methods in order to
make hypertree decomposition applicable for larger CSPs.

6 Conclusion

In this paper we described modeling as formulating a corresponding constraint
satisfaction problem. We showed how the resulting CSP model can be used to
extract solutions. For this purpose we introduced a process comprising two parts. I.n
the first part the CSP is compiled into an equivalent acyclic CSP. The second part is
for computing solutions. We extended the CSP model by introducing assumptions
which allow for distinguishing causes and effects. The ideas behind originate from

352

Using model-based reasoning for generating explanations from ...

m(?del-based diagnosis. Furthermore, we showed how assumptions can be used to
gain knowledge about explanations for a given situation.

References

1.
2.

3.
. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of

10.
11.

12.

13.
14.

15.
16.
17.

18.

Dechter, R.: From local to global consistency. Artificial Intelligence 55 (1992) 87-107.
Mz.ackwon.h. A.: Constraint satisfaction. In Shapiro, S.C., ed.: Encyclopedia of Arti-
ficial Intelligence, John Wiley & Sons (1987) 205-211.

Dechter, R.: Constraint Processing. Morgan Kaufmann (2003).

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal of Computing 13 (1984) 566-579.

. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence

38 (1989) 353-366.

. Gottlob, G., Leone, N., Scarcello, F.: On Tractable Queries and Constraints. In:

Proc. 12th International Conference on Database and Expert Systems Applications
DEXA 2001, Florence, Italy (1999).

. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decomposition and Tractable

Queries. In: Proc. 18th ACM SIGACT SIGMOD SIGART Symposium on Principles
of Database Systems (PODS-99), Philadelphia, PA (1999) 21-32.

. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition

methods. Artificial Intelligence 124 (2000) 243-282.

. Heller, U., Struss, P.: Transformation of Qualitative Dynamic Models — Application

in Hydro-Ecology. In: Proceedings of the 10** International Workshop on Qualitative
Reasoning, AAAI Press (1996) 83-92.

Heller, U., Struss, P.: Conceptual Modeling in the Environmental Domain. In: Pro-
ceedings of the 15'* IMACS World Congress on Scientific Computation, Modelling
and Applied Mathematics. Volume 6., Berlin, Germany (1997) 147-152.

Heller, U., Struss, P.: Diagnosis and therapy recognition for ecosystems - usage
of model-based diagnosis techniques. In: 12th International Symposium Computer
Science for Environmental Protection (UI-98), Bremen (1998).

Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 (1987)
57-95.

Salles, P., Bredeweg, B., Bensusan, N.: The ants’ garden: Qualitative models of
complex interactions between populations. In: Proceedings of the 17** International
Workshop on Qualitative Reasoning (QR), Brasilia, Brazil (2003).

Salles, P., Bredeweg, B., Araujo, S.: Qualitative models about stream ecosystem
recovery: Exploratory studies. In: Proceedings of the 17** International Workshop
on Qualitative Reasoning (QR), Brasilia, Brazil (2003).

Fattah, Y.E., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceedings
14" International Joint Conf. on Artificial Intelligence. (1995) 1742 - 1748.
Stumptner, M., Wotawa, F.: Diagnosing Tree-Structured Systems. In: Proceedings
15" International Joint Conf. on Artificial Intelligence, Nagoya, Japan (1997).
Stumptner, M., Wotawa, F.: Diagnosing tree-structured systems. Artificial Intelli-
gence 127 (2001) 1-29. . o
Sachenbacher, M., Williams, B.C.: Diagnosis as semiring-based constraint optimiza-
tion. In: Proceedings of the 16* European Conference on Artificial Intelligence
(ECALI), Valencia, Spain (2004) 873-877.

353

Franz Wotawa

Greiner, R.. Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in
theory of diagnosis. Artificial Intelligence 41 (1989) 79-88.

Frohlich, P., Nejdl, W.: A Static Model-Based Engine for Model-Based Reasonin 1
Proceedings 15'* International Joint Conf. on Artificial Intelligence, Nagoya Jg. i
(1997). » Japan
Gottlob, G., Hutle, M., Wotawa, F.: Combining hypertree, bicomp, and hinge 4
composition. In: Proceedings of the European Conference on Artificial Intelljge, "
(ECATI), Lyon, France (2002). Eeties

Reiter‘s

354

